AREA OF COMPOUND SHAPES

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Foundation Tier

1.

24	No (supported)	P1	calculates area of trapezium eg ½ ×	7 × (10+16) (= 91)	
	(supported)	P1	for division by coverage eg $\div 2$ or [area of trapezium] $\div 2$ (= 45.5) or process to find coverage per tin eg 5×2 (= 10)	for process to find number of tins bought eg $160 \div 16.99 = 9$ tins	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1	for division to find the number of tins eg $\div 5$ or "45.5" $\div 5$ (= 9.1) or [area of trapezium] \div "10" (= 9.1)	for using whole no. of tins to find total litres eg 9×5 (= 45)	
		P1	(dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99	(dep on at least P2) for a process to find the total coverage eg "45" × 2 (= 90)	
		Cl	for 'No' supported by correct figures eg 169.9 or 90 and 91		There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Foundation Tier

2.

24	147	P1	starts process, eg uses x and $x + 7$
		P1	starts to work with at least 6 correct sides, may be on the diagram or in an expression
		P1	(dep on previous P1) gives a correct expression for the perimeter, eg $x + x + 7 + x + 7 + x + 7 + x + 7 + x + 7 + x + 7 + x + 7$
		A1	or adds at least 6 correct sides and equates to 70 for width = 3.5 oe and length = 10.5 oe
		B1	ft (dep P2) for correct area for their x

Pearson Edexcel – Specimen 1 - Paper 1 (Non-Calculator) Foundation Tier

3.

16	32	M1	for method to find area of any one rectangle cao
		Ai	cao

23	48	P1 begins to work with rectangle dimensions eg $l+w=7$ or $2 \times l+w$ (=11) C1 shows a result for a dimension eg using $l=4$ or $w=3$ P1 begins process of finding total area eg $4 \times "3" \times "4"$ A1 cao
----	----	--

OCR - Tuesday 03 November 2020- Morning - Paper 1 (Calculator) Foundation Tier

5.

25		142.2[0] with correct working	6	M1 for 36 ² or 1296	Correct working requires M1 AND M1 AND M1
				M1 for $k \times \pi \times 18^2$ oe where $k = \frac{1}{2}$, 1, 1½ or 3	M2 implied by 2822 to 2823.02 or M1 implied by 1526 to 1527.02, 1017 to 1018.008, 508 to 509.004,
				AND	3051 to 3054.024, 162π, 324π, 486π rot to at least nearest integer
				M1 for their area × 30	their area cannot be 36 and M1 implied by 84660 to 84 690.6 or 84.66 to 84.7
				M1 for their mass ÷ 1000 and ÷ 10 or counting up in 10 000s to their mass	their mass is attempt at (rectangle and circle(s)) × 30, M1 implied by 8.46 to 8.47
				M1 for their 9 × 15.8	their 9 dep. on fourth M1 scored with a rounding up to next integer
					with a rounding up to next integer
				If 0, 1 or 2 scored instead award SC3 for answer of 142.2[0] with insufficient working	
				If 0 or 1 scored instead award SC2 for 2822 to 2823.02	
				If 0 scored award SC1 for 1526 to 1527.02, 1017 to 1018.008, 508 to 509.004, 3051 to 3054.024, 162π, 324π, 486π rot to at least nearest integer	

OCR Monday 6 November 2017 – Morning (Calculator) Foundation Tier

6.

9			42	6	M1 for $\frac{6\times 2}{2}$ oe A1 for [area triangle] = 6 M1 for $\frac{3+5}{2}\times 8$ oe A1 for [area trapezium] = 32 M1 for 10×8 – (their area of triangle + their area of triangle + their area of triangle + their area of trapezium)	Accept other equivalent methods Could be implied by 24 + 8
---	--	--	----	---	--	---

Pearson Edexcel – Sample Papers - Paper 3 (Calculator) Foundation Tier

12	48	P1	For start to process eg.96 \div 12 or 96 \div 2
		A1	cao

8.

18	252	P1 For start to process eg. radius = 12 ÷ 4 (=3) M1 Method to find area of trapezium or semicircle or circle P1 Process to find area of the shaded region A1 251.7 – 252
----	-----	--

OCR Wednesday 8 November 2017 – Morning (Calculator) Foundation Tier

9.

17		3:8 cao	4	Using fractions M1 for $\frac{1}{4}$ [+] $\frac{1}{4}$ [+] $\frac{1}{8}$	May be on diagr	am
				M1 for $1 - their \frac{5}{8}$		
				B1 for their $\frac{3}{8}$: $\frac{8}{8}$		
				Using Areas M1 for un-shaded area = 2×2×1+2 + 1×1+2 (=2.5) oe M1 shaded area = their 4 – their 2.5	Any side length $1 \to 0.625 (1)$ $2 \to 2.5 (4)$ $3 \to 5.625 (9)$	$5 \rightarrow 15.625 (25)$ $6 \rightarrow 22.5 (36)$ $7 \rightarrow 30.625 (49)$
				B1 for <i>their</i> (1.5 : 4)	4 → 10 (16)	8 → 40 (64)

OCR Sample Question Paper 1 – Morning/Afternoon (Calculator) Foundation Tier

10.

5		48 (cm²)	3 1 AO1.3a 2 AO3.1b	M1 $\frac{1}{2} \times 8 \times 4 = 16$	
			2 A03.15	M1 their '16' × 3	

OCR Sample Question Paper 3 – Morning/Afternoon (Calculator) Foundation Tier

6	(a)	40	1		
			1 AO1.3a		
	(b)	Correct reasoning leading to 36.9	4	M2 for $\pi \times 1^2$	
			1 AO1.3b	Or	
			2 AO2.2	1 .	
			1 AO3.1b	M1 for $\frac{1}{2} \times \pi \times 1^2$	
				And	
				M1 for their '40' $-\pi \times 1^2$	
	(c)	7.38 or better	3	M1 for 2 mm = 0.2 cm soi	
			1 AO1.3a 2 AO3.1b	M1 for 36.9 × their '0.2' oe	

AQA Tuesday 21 May 2019 – Morning (Non-Calculator) Foundation Tier

	Alternative method 1: areas							
	$\pi \times 10^2$ or 100π	M1	implied by [314, 314.2]					
	$\pi \times (8 \div 2)^2$ or $\pi \times 4^2$ or 16π or $\pi \times (8 \div 2)^2 \div 2$ or $\pi \times 4^2 \div 2$	M1	implied by [50.2, 50.3] or [25.12, 25.14] 92π or 84π or $92:8$ or $8:92$					
	or 16π ÷ 2 or 8π		or 84 : 16 or 16 : 84 implies M1M1					
	(their $100(\pi)$ – their $8(\pi)$) \div their $8(\pi)$ or $92(\pi) \div 8(\pi)$		dep on M2 absence of π must be consistent condone 16(π) as their 8(π) in first					
	or their $100(\pi) \div \text{their } 8(\pi) (-1)$	M1dep	calculation only, ie condone (their $100(\pi)$ – their $16(\pi)$) ÷ their $16(\pi)$ or $84(\pi)$ ÷ $16(\pi)$,					
	or $12\frac{1}{2}$ (-1) or 12.5 (-1)		but not their $100(\pi)$ ÷ their $16(\pi)$ (-1)					
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$					
25	Alternative method 2: scale factor							
	$\frac{10}{8 \div 2}$ or $\frac{10}{4}$ or $\frac{5}{2}$		oe scale factor of lengths eg $\frac{2}{5}$ or 0.4					
	or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5	M1	accept $2:5$ or $5:2$ oe ratio π may be present, but must be consistent in numerator and denominator					
	$(\text{their } \frac{5}{2})^2 \text{ or } \frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$ accept 4 : 25 or 25 : 4 oe ratio					
	$2 \times \text{their } \frac{25}{4} \ (-1) \ \text{or} \ \frac{25}{2} \ (-1)$	M1dep	oe eg $2 \div \text{their } \frac{4}{25} (-1)$					
	or $12\frac{1}{2}$ (-1) or 12.5 (-1)							
	11 1/2 or 11.5	A1	condone $\frac{23}{2}$					
	Additional Guidance is on the following page							

	Additional Guidance			
	Accept, for example, $\pi 8$ or $\pi \times 8$ or $8 \times \pi$ for 8π			
	An answer of 11.5 π with no incorrect working	M1M1M1A0		
	Consistent use of πd^2 for the area of a circle gives the area of the circle as 400π , the area of the semicircle as 32π and the area of the shaded part as 368π . This also gives the answer 11.5, but scores zero	МОМОМОАО		
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area			
25 (cont)	eg 1			
	Big area = 100π , little area = 8π , big circumference = 20π , little circumference = 4π , $20 \div 4 = 5$	M1M1M0A0		
	eg 2			
	100π , 8π , 20π , 4π	МОМО		
	Do not award the second mark if the value of 8π comes from πd	M?M0		
	This is implied by, eg, 'Area of circle = 20π , area of semi-circle = 8π '	MOMO		
	$\frac{100(\pi) - 16(\pi)}{16(\pi)}$ (which may give an answer of 5.25)	M1M1M1A0		
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer of 6.25)	M1M1M0A0		

AQA Thursday 24 May 2018 – Morning (Non-Calculator) Foundation Tier

	Alternative method 1		
	6 × 8 or 48 or 2 ² or 2 × 2 or 4	M1	may be on diagram
7	$48 \div 4 = 12$ or $48 \div 12 = 4$ or $4 \times 12 = 48$ or $\frac{4}{48} (=) \frac{1}{12}$	A1	oe eg 48 ÷ 2 = 24 and 24 ÷ 2 = 12
	Alternative method 2 6 ÷ 2 or 2 ÷ 6 or 8 ÷ 2 or 2 ÷ 8 3 × 4 = 12 or 1 1 1 1	M1	Need to justify where this product comes from with M1 work seen
	$\frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$ with full working seen		Irom with MT work seen

	Alternative method 3			
7 cont	One row of 4 squares drawn or one column of 3 squares drawn	M1	Mark intention, not accuracy of drawing, 2m labels not required	
	Rectangle split into 4 columns and 3 rows	A1		
	Additional Guidance			
	$(2 \times 2 = 4, 6 \times 8 = 48 \text{ and}) 4 \text{ is } \frac{1}{12} \text{ of } 48$			M1A1
	4 12s are 48			M1A1
	8 × 6 = 48, 12 ÷ 48 = 4 (cannot condone incorrect order as 'show that')			M1A0
	$\frac{4}{48}$ so correct			M1A0
	Beware 4 (or 12) arising from incorrect working eg $2 + 2 = 4$, $8 + 6 = 14$, $14 - 2 = 12$			M0A0
	2 × 2 + 2 × 2 = 8 (misconception on area of rug) cannot score for 2 × 2			M0A0
	$6 \times 8 = 48$ and $48 \times 2 = 96$ (ignore additional 'method' and give M1 for 48) $6 \times 8 = 48$ and $48 \div 2 = 24$ (ignore additional 'method' and give M1 for 48) $6 \times 8 \times 2$ (ignore additional 'method' and give M1 for 6×8)			M1A0
	6 × 8 = 48 and 48 ÷ 2 ÷ 2 = 12 (equivalent to dividing by 4)			M1A1
	Ignore references to perimeter or units if it is clear they are working out area			

AQA Sample Paper 1– Morning (Non-Calculator) Foundation Tier

30	Alternative method 1			
	$(x+3)^2$	M1	oe	
	$x^2 + 3x + 3x + 9$	A1	oe	
	3 × (x + 3)	M1	oe	
	$x^{2} + 3x + 3x + 9 + 3x + 9 + 9$ $= x^{2} + 9x + 27$	A1		
	Alternative method 2			
	(x+6)(x+3)	M1	oe	
	$x^2 + 6x + 3x + 18$	A1	oe	
	their $(x^2 + 6x + 3x + 18) + 3 \times 3$	M1	oe	
	$x^{2} + 6x + 3x + 18 + 9$ $= x^{2} + 9x + 27$	A1		
	Alternative method 3			
	$(x+3)^2$	M1	oe	
	$x^2 + 3x + 3x + 9$	A1	oe	
	3 × (x + 6)	M1	oe	
	$x^{2} + 3x + 3x + 9 + 3x + 18$ $= x^{2} + 9x + 27$	A1		
	Alternative method 4			
	$(x+6)^2$	M1	oe	
	$x^2 + 6x + 6x + 36$	A1	oe	
	3 × (x + 3)	M1	oe	
	$x^{2} + 6x + 6x + 36 - 3x - 9$ $= x^{2} + 9x + 27$	A1		

AQA Sample Paper 2– Morning (Calculator) Foundation Tier

	Alternative method 1			
30	10 ÷ 4 or 2.5 or 4 ÷ 10 or 0.4 or $\frac{1}{2} \times (18 + 10) \times 25$ or 350	M1	oe	
	18 ÷ their 2.5 or 18 × their 0.4 or 7.2 or 25 ÷ their 2.5 or 25 × their 0.4 or 10	M1dep	oe	
	$\frac{1}{2} \times (18 + 10) \times 25$ or 350 and $\frac{1}{2} \times (\text{their } 7.2 + 4) \times \text{their } 10$ or 56	M1dep	Must see working	
	350 – 56 = 294	A1	Do not award without working seen	
	Alternative method 2			
	10 ÷ 4 or 2.5 or 4 ÷ 10 or 0.4 or $\frac{1}{2} \times (18 + 10) \times 25$ or 350	M1	oe	
	(Area scale factor =) (their 2.5) ² or (their 0.4) ²	M1dep		
	their 350 \div (their 2.5) ² or their 350 \times (their 0.4) ² or 56	M1dep	Must see working	
	350 – 56 = 294	A1	Do not award without working seen	